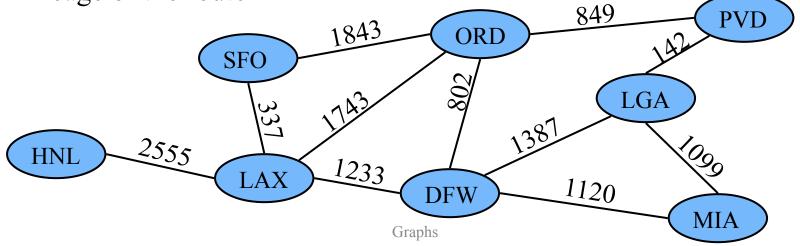

Graphs

Outline / Reading

- Graphs (6.1)
- Definition
- Applications
- Terminology
- Properties
- ADT

Data structures for graphs (6.2)

- Edge list structure
- Adjacency list structure
- Adjacency matrix structure


Graph

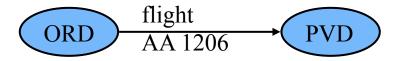
A graph is a pair (V, E), where

- *V* is a set of nodes, called vertices
- *E* is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements

Example:

- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

3

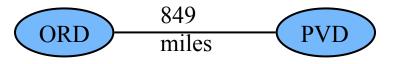

Edge Types

Directed edge

- ordered pair of vertices (*u*,*v*)
- first vertex *u* is the origin
- second vertex *v* is the destination
- e.g., a flight

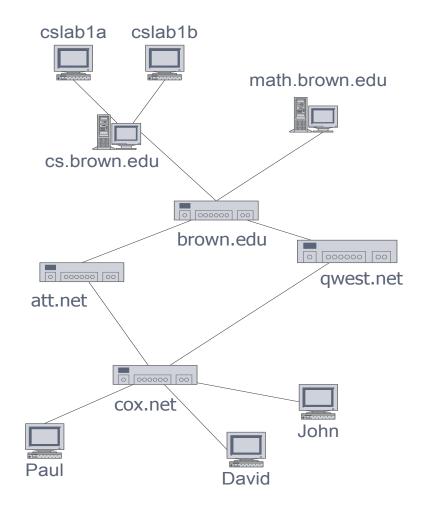
Directed graph

- all the edges are directed
- e.g., flight network

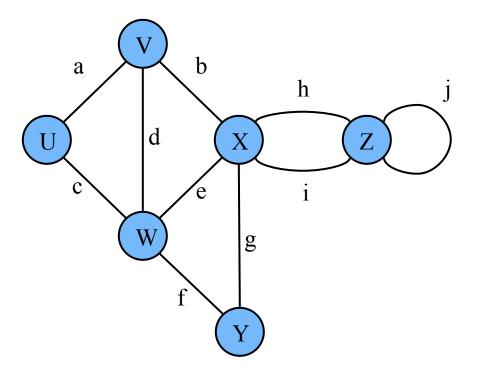


Undirected edge

- unordered pair of vertices (*u*,*v*)
- e.g., a flight route


Undirected graph

- all the edges are undirected
- e.g., route network


Applications

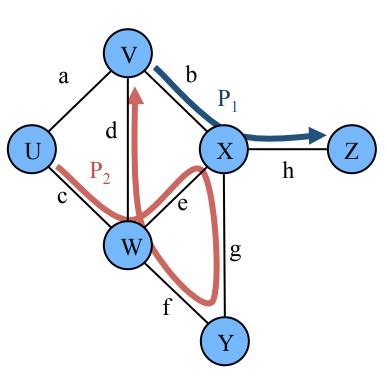
- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

Terminology

- End vertices (or endpoints) of an edge
 U and V are the endpoints of a
- Edges incident on a vertex *a*, *d*, and *b* are incident on *V*
- Adjacent vertices
 U and V are adjacent
- Degree of a vertex
 X has degree 5
- Parallel edges *h* and *i* are parallel edges
- Self-loop *j* is a self-loop

Terminology (cont.)

Path


- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints

Simple path

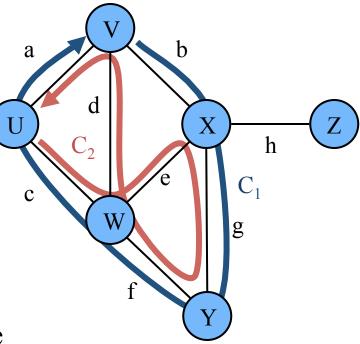
• path such that all its vertices and edges are distinct

Examples

- $P_1 = (V, b, X, h, Z)$ is a simple path
- P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

Terminology (cont.)

Cycle


- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints

Simple cycle

• cycle such that all its vertices and edges are distinct

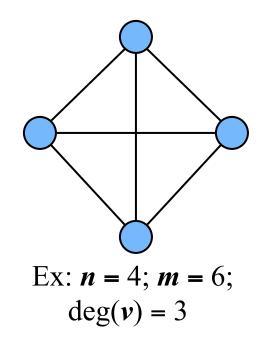
Examples

- $C_1 = (V, b, X, g, Y, f, W, c, U, a, \downarrow)$ is a simple cycle
- C₂=(U,c,W,e,X,g,Y,f,W,d,V,a, ↓) is a cycle that is not simple

Properties

Notation

- *n* number of vertices
- *m* number of edges
- deg(v) degree of vertex v


Property 1. $\Sigma_v \deg(v) = 2m$ Proof: each edge is counted twice

Property 2. In an undirected graph with no selfloops and no multiple edges

 $m \le n \ (n-1)/2$

Proof: each vertex has degree at most (n - 1)

What is the bound for a directed graph?

Main Methods of the Graph ADT

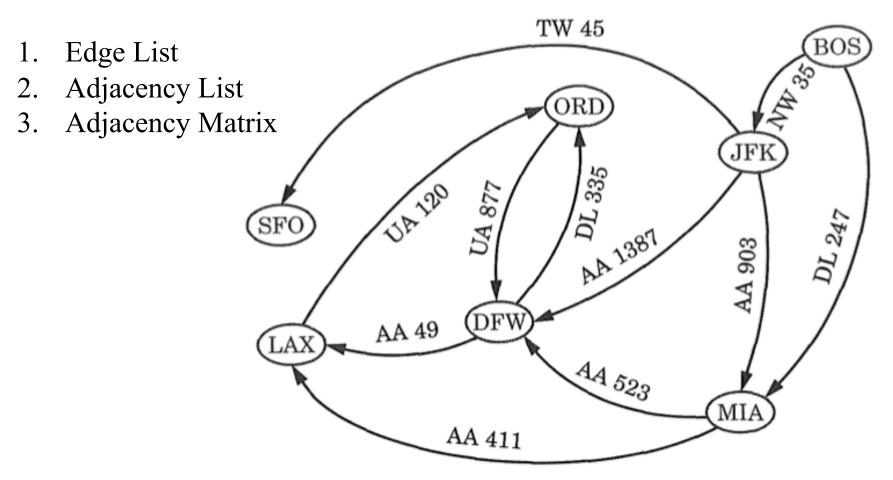
Vertices and edges

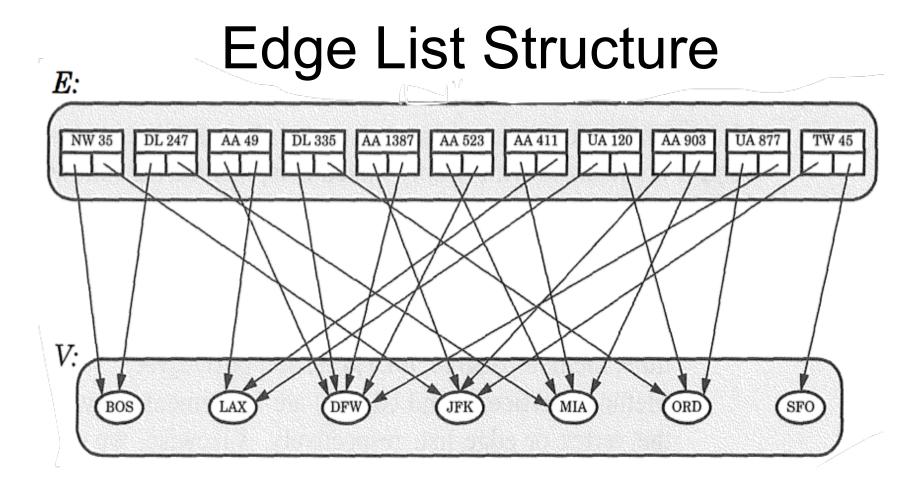
- are positions
- store elements

Accessor methods

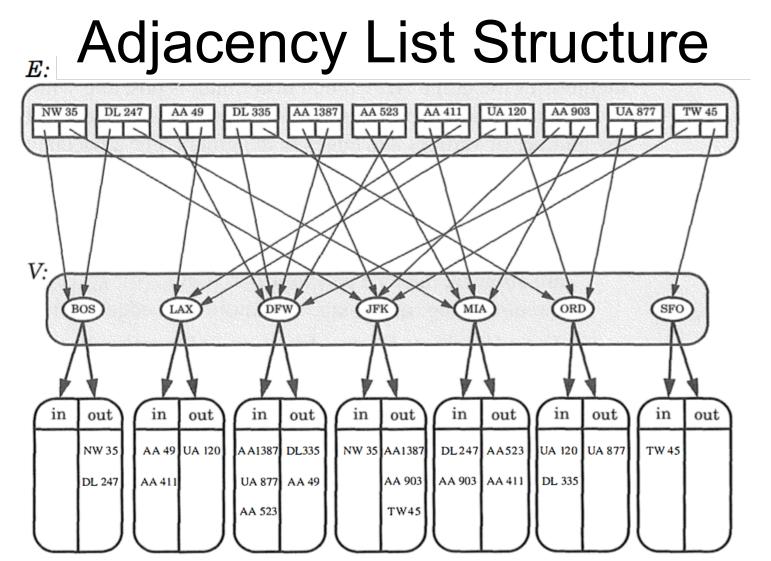
- aVertex()
- incidentEdges(v)
- endVertices(e)
- isDirected(e)
- origin(e)
- destination(e)
- opposite(v, e)
- areAdjacent(v, w)

Update methods


- insertVertex(o)
- insertEdge(v, w, o)
- insertDirectedEdge(v, w, o)
- removeVertex(v)
- removeEdge(e)


Generic methods

- numVertices()
- numEdges()
- vertices()
- edges()


Data Structures

Structures to represent a graph:

A container of edge objects, where each edge object references the origin and destination vertex object

An edge list structure, where additionally each vertex object v references an incidence container which stores references to the edges incident on v.

Adjacency Matrix Structure

		U						
		0	1	2	3	4	5	6
		BOS	DFW	JFK	LAX	MIA	ORD	SFO
		0	1	2	3	4	5	6
				2	5	4	5	0
	0	a	a	N TX 17	Ø	DI	ø	Ø
BOS	0	Ø	Ø	NW	Ø	DL	Ø	Ø
200				35		247		
		~	~			đ		đ
DFW	1	Ø	Ø	ø	AA	Ø	DL	ø
					49		335	
JFK	2	Ø	AA	Ø	Ø	AA	Ø	TW
JA AX	_		1387			903		45
-								
LAX	3	Ø	Ø	Ø	Ø	Ø	UA	Ø
LAA	5						120	
							120	
	4	ø	AA	ø	AA	ø	ø	ø
MIA	4		523		411	~	~	~
			525		411			
	5	ø	UA	ø	ø	ø	ø	ø
ORD	5			Ø			Ø	Ø
			877					
CEO	-	a	a	đ	ä	Ø	ø	ø
SFO	6	Ø	Ø	ø	Ø	Ø	Ø	Ø

A 2D array of all vertex pairs, where cell A[u,v] stores edge *e* incident on vertices *u*,*v* if such an edge exists.

Asymptotic Performance

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops Bounds are "big-Oh" 	Edge Adjacency List List		Adjacency Matrix	
Space	n + m	n + m	n ²	
incidentEdges(v)	т	deg(v)	п	
areAdjacent (v, w)	т	$\min(\deg(v), \deg(w))$	1	
insertVertex(o)	1	1	n ²	
<pre>insertEdge(v, w, o)</pre>	1	1	1	
removeVertex(v)	т	deg(v)	n ²	
removeEdge(e)	1	1	1	