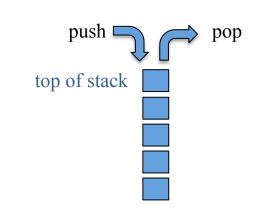
Elementary Data Structures

Stacks & Queues
Lists, Vectors, Sequences
Amortized Analysis
Trees

Stack ADT



- Container that stores arbitrary objects
- Insertions and deletions follow last-in first-out (LIFO) scheme
- Main operations
 - push(object): insert element
 - object pop(): remove and returns last element
- Auxiliary operations
 - object top(): returns last element without removing it
 - integer size(): returns number of elements stored
 - boolean isEmpty(): returns whether no elements are stored

Applications of Stacks

Direct

- Page visited history in a web browser
- Undo sequence in a text editor
- Chain of method calls in C++ runtime environment

• Indirect

- Auxiliary data structure for algorithms
- Component of other data structures

Array-based Stack

- Add elements from left to right in an array S of capacity N
- A variable t keeps track of the index of the top element
- Size is *t*+1

```
Algorithm push(o):

if t = N-1 then

throw FullStackException

else

t \leftarrow t+1
S[t] \leftarrow o
```

O(1)

```
Algorithm pop():

if isEmpty() then

throw EmptyStackException

else

t \leftarrow t - 1

return S[t + 1]
```


Extendable Array-based Stack

- In a push operation, when the array is full, we can replace the array with a larger one instead of throwing an exception
 - Values in old array must be copied over to the new array
- How large should the new array be?
 - incremental strategy: increase the size by a constant c

```
- doubling strategy: double the size

Algorithm push(o)

if t = N-1 then

N^* = ?

A \leftarrow \text{new array of size } N^*

for i \leftarrow 0 to t do

A[i] \leftarrow S[i]

S \leftarrow A

t \leftarrow t+1

S[t] \leftarrow o
```

Comparing the Strategies via Amortization

- Amortization: analysis tool to understand running times of algorithms that have steps with widely varying performance
- We compare incremental vs. doubling strategy by analyzing the total time T(n) needed to perform a series of n push operations
- We call amortized time of a push operation the average time taken by a push over a series of operations
 - i.e., T(n) / n
- Assume we start with an empty stack represented by an empty array

Incremental Strategy

- We replace the array k = n/c times
- Total time T(n) of a series of n push operations is proportional to:

$$n + c + 2c + 3c + 4c + ... + kc$$

= $n + c(1 + 2 + 3 + ... + k)$
= $n + ck(k + 1)/2$

- Since c is constant, T(n) is $O(n + k^2)$, which is $O(n^2)$
- The amortized time of a push operation is O(n)

Doubling Strategy

- We replace the array $k = \log_2 n$
- Total time T(n) of a series of n push operations is proportional to:

$$n + 1 + 2 + 4 + 8 + ... + 2^{k}$$

$$= n + 2^{k+1} - 1$$

$$= n + 2^{\log n + 1} - 1$$

$$= n + 2^{\log n} 2^{1} - 1$$

$$= n + 2n - 1$$

$$= 3n - 1$$

Recall the summation of this geometric series:

$$2^0 + 2^1 + \ldots + 2^k = 2^{k+1} - 1$$

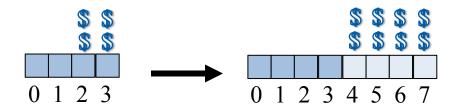
- T(n) is O(n)
- The amortized time of a push operation is O(1)

Accounting Method Analysis

- The accounting method determines amortized running time using a scheme of credits and debits
- View computer as a coin-operated devices that needs \$1 (cyber-dollar) for each primitive operation
 - Set up an amortization scheme for charging operations
 - Must always have enough money to pay for actual cost of operation
 - Total cost of the series of operations is no more than the total amount charged
- (amortized time) ≤ (total \$ charged) / (# operations)

Accounting Method Analysis: Doubling Strategy

- How much to charge for a push operation?
 - Charge \$1? No, not enough \$\$ to copy old elements
 - Charge \$2? No, not enough \$\$ to copy old elements a second time
 - Charge \$3 for a push: use \$1 to pay for push, save \$2 to pay for copying all old elements into new array.



• Each push runs in O(1) amortized time; n pushes run in O(n) time.

Queue ADT

- Container that stores arbitrary objects
- Insertions and deletions follow first-in first-out (FIFO) scheme
- Main operations
 - enqueue(object): insert element at end
 - object dequeue(): remove and returns front element
- Auxiliary operations
 - object front(): returns front element without removing it
 - integer size(): returns number of elements stored
 - boolean isEmpty(): returns whether no elements are stored

Applications of Queues

• Direct

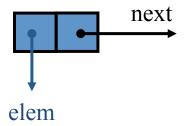
- Waiting lines
- Access to shared resources
- Multiprogramming

Indirect

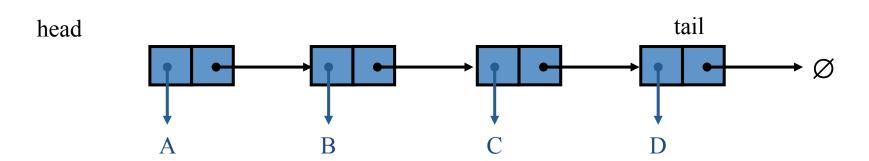
- Auxiliary data structure for algorithms
- Component of other data structures

Singly Linked List

A data structure consisting of a sequence of nodes

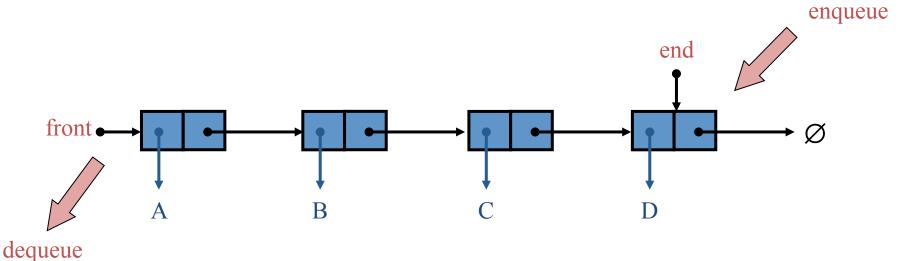


Each node stores an element and a link to the next node



Queue with a Singly Linked List

- Singly Linked List implementation
 - front is stored at the first node
 - end is stored at the last node



• Space used is O(n) and each operation takes O(1) time

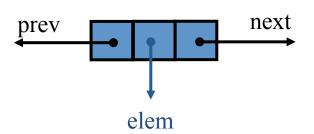
List ADT

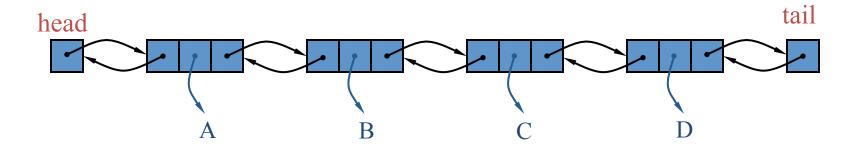
- A collection of objects ordered with respect to their **position** (the node storing that element)
 - each object knows who comes before and after it
- Allows for insert/remove in the "middle"
- Query operations
 - isFirst(p), isLast(p)
- Accessor operations
 - first(), last()
 - before(p), after(p)

- Update operations
 - replaceElement(p, e)
 - swapElements(p, q)
 - insertBefore(p, e), insertAfter(p, e)
 - insertFirst(e), insertLast(e)
 - remove(p)

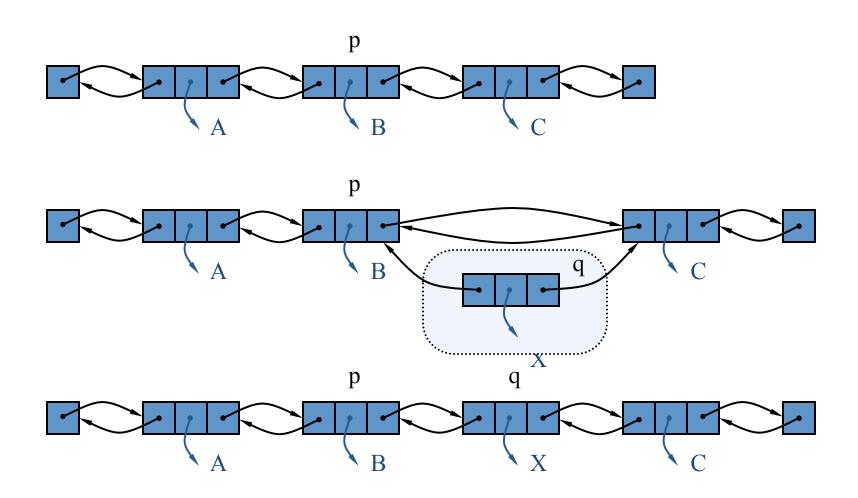
Doubly Linked List

- Provides a natural implementation of List ADT
- Nodes implement position and store
 - element
 - link to previous and next node
- Special head and tail nodes

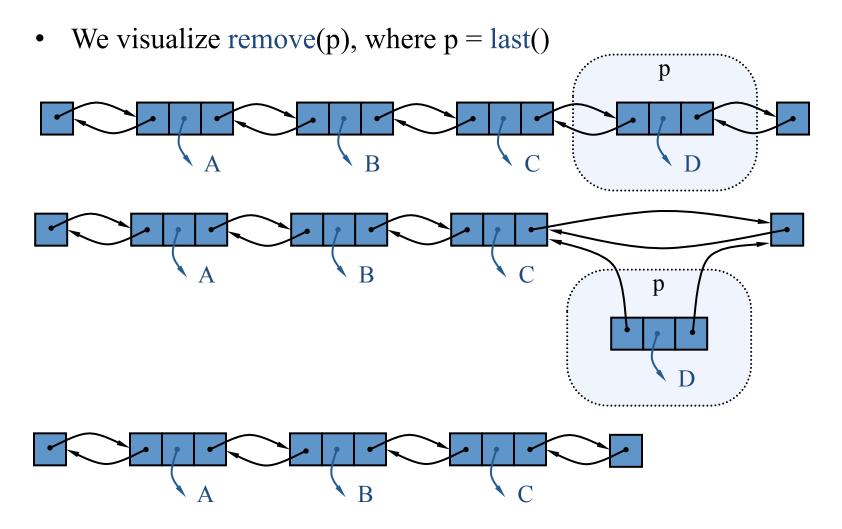




Insertion: insertAfter(p, X)



Deletion: remove(p)



Vector ADT

- A linear sequence that supports access to its elements by their rank (number of elements preceding it)
- Main operations:
 - size()
 - isEmpty()
 - elemAtRank(r)
 - replaceAtRank(r, e)
 - insertAtRank(r, e)
 - removeAtRank(r)

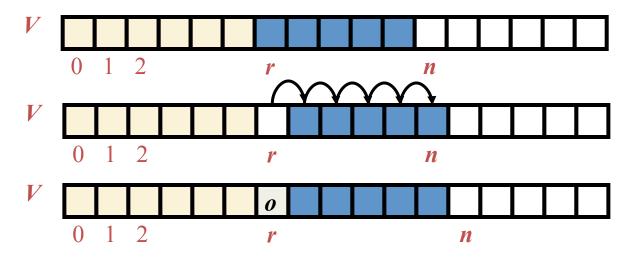
Array-based Vector

- Use an array *V* of size *N*
- A variable *n* keeps track of the size of the vector (number of elements stored)
- elemAtRank(r) is implemented in O(1) time by returning V[r]



Insertion: insertAtRank(r, o)

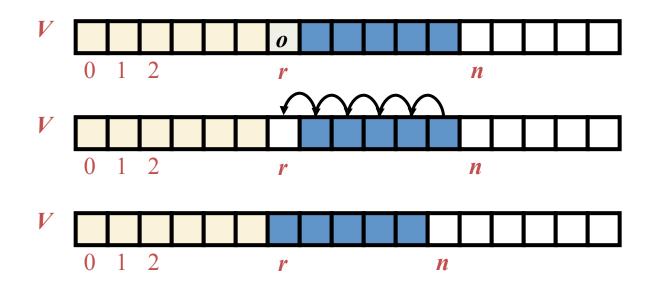
- Need to make room for the new element by shifting forward the n-r elements V[r], ..., V[n-1]
- In the worst case (r = 0), this takes O(n) time



We could use an extendable array when more space is required

Deletion: removeAtRank(r)

- Need to fill the hole left by the removed element by shifting backward the n r 1 elements V[r + 1], ..., V[n 1]
- In the worst case (r = 0), this takes O(n) time



Sequence

- A generalized ADT that includes all methods from vector and list ADTs
- Provides access to its elements from both rank and position
- Can be implemented with an array or doubly linked list

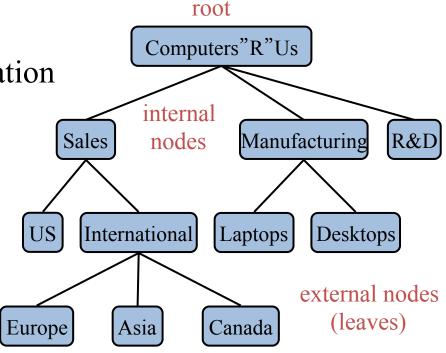
Operation	Array	List
size, isEmpty	<i>O</i> (1)	<i>O</i> (1)
atRank, rankOf, elemAtRank	O (1)	O(n)
first, last, before, after	<i>O</i> (1)	<i>O</i> (1)
replaceElement, swapElements	<i>O</i> (1)	<i>O</i> (1)
replaceAtRank	O (1)	O(n)
insertAtRank, removeAtRank	O(n)	O(n)
insertFirst, insertLast	<i>O</i> (1)	<i>O</i> (1)
insertAfter, insertBefore	O(n)	O (1)
remove	O(n)	O (1)

Tree

Stores elements hierarchically

• Each node has a parent-child relation

- Direct applications:
 - Organizational charts
 - File systems
 - Programming environments



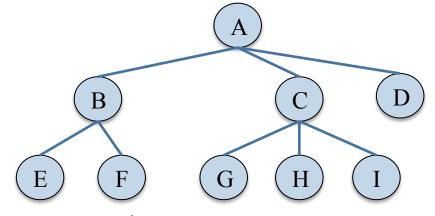
Tree ADT

The positions in a tree are its nodes.

- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)
- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)

- Generic methods:
 - integer size()
 - boolean isEmpty()
 - objectIterator elements()
 - positionIterator positions()
 - swapElements(p, q)
 - object replaceElement(p, o)

Tree Traversal



A traversal visits the nodes of a tree in a systematic manner.

• preorder: a node is visited before its descendants

preOrder(A) visits ABEFCGHID

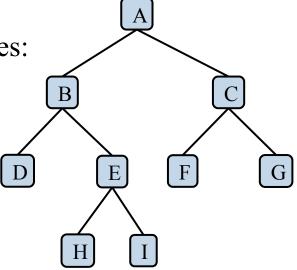
postorder: a node is visited after its descendants

O(n) Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)

postOrder(A) visits EFBGHICDA

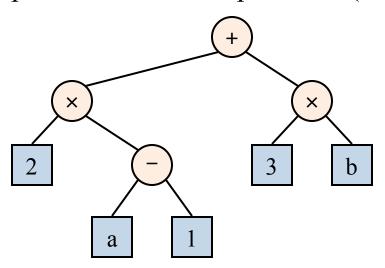
Binary Trees

- A binary tree is a tree with the following properties:
 - Each internal node has two children
 - The children of a node are an ordered pair (left child, right right)
- Recursive definition: a binary tree is
 - A single node is a binary tree
 - Two binary trees connected by a root is a binary tree
- Applications:
 - arithmetic expressions
 - decision processes
 - searching



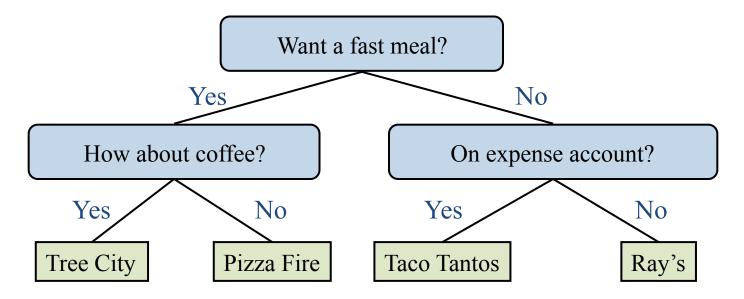
Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Ex: arithmetic expression tree for expression $(2 \times (a 1) + (3 \times b))$



Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Ex: dining decision



Properties of Binary Trees

Properties:

•
$$e = i + 1$$

$$n = 2e - 1$$

•
$$h \leq i$$

$$h \le (n-1)/2$$

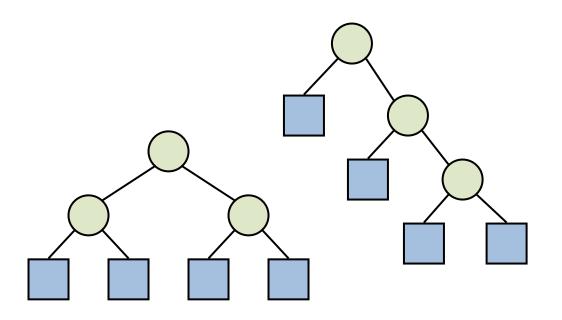
•
$$e \le 2^h$$

$$h \ge \log_2 e$$

$$h \ge \log_2(n+1) - 1$$

- *n* number of nodes
- e number of external nodes

h height (max distance from root)

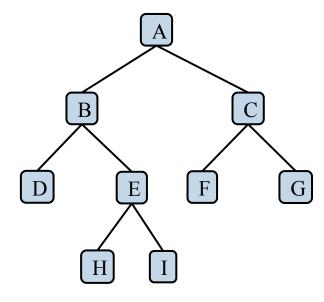


Inorder Traversal of a Binary Tree

• inorder traversal: visit a node after its left subtree and before

its right subtree

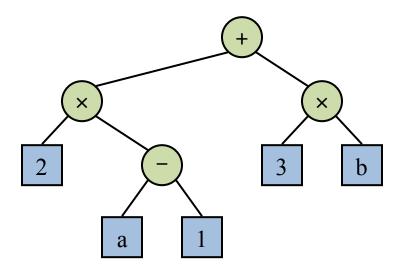
```
Algorithm inOrder(v)
if isInternal (v)
inOrder (leftChild (v))
visit(v)
if isInternal (v)
inOrder (rightChild (v))
```



Ex: DBHEIAFCG

Printing Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand/operator when visiting node
 - print "(" before visiting left
 - print ")" before visiting right



```
Algorithm printExpression(v)

if isInternal (v)

print("(")

inOrder (leftChild (v))

print(v.element ())

if isInternal (v)

inOrder (rightChild (v))

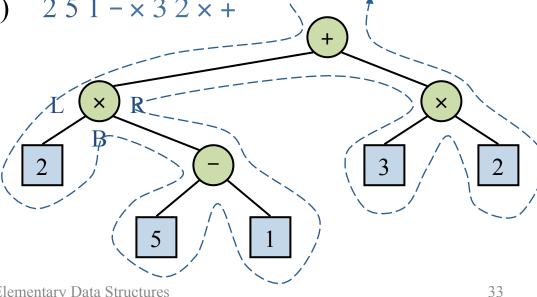
print (")")
```

$$((2 \times (a - 1)) + (3 \times b))$$

O(n)

Euler Tour Traversal

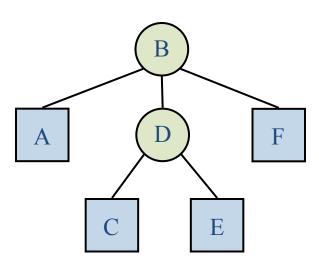
- Generic traversal of a binary tree
- Includes preorder, postorder, and inorder traversals as special cases
- Walk around the tree and visit each node three times:
 - on the left (preorder) $+ \times 2 51 \times 32$
 - from below (inorder) $2 \times 5 1 + 3 \times 2$
 - on the right (postorder) $251 \times 32 \times +$

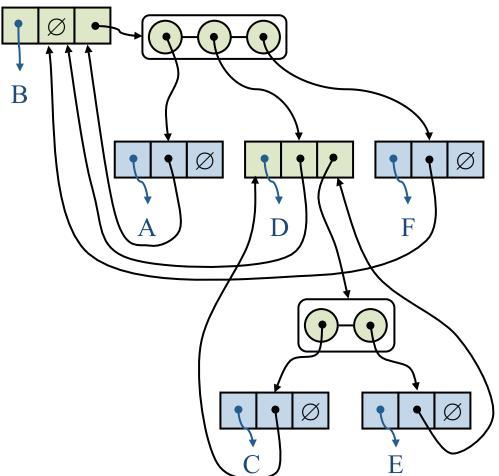


Linked Data Structure for Representing Trees

A node stores:

- element
- parent node
- sequence of children nodes

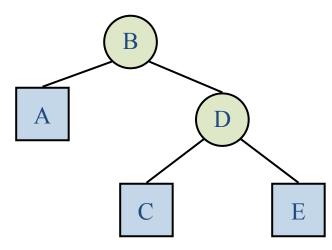


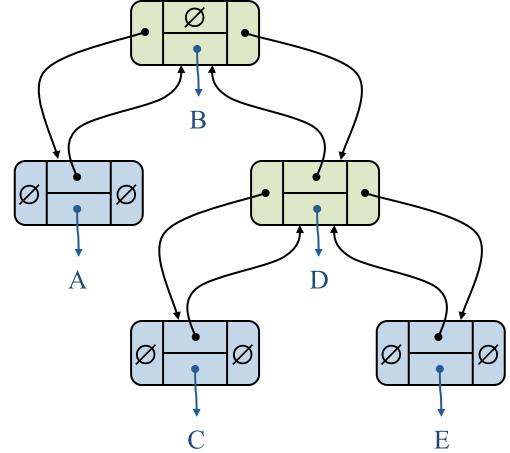


Linked Data Structure for Binary Trees

A node stores:

- element
- parent node
- left node
- right node

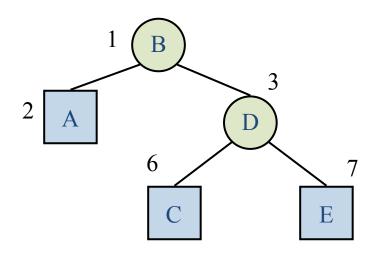


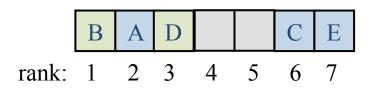


Array-Based Representation of Binary Trees

Nodes are stored in an array

- rank(root) = 1
- If rank(node) = i, then rank(leftChild) = 2*irank(rightChild) = 2*i + 1





Ex: 'A' is left child of B

$$rank(A) = 2 * rank(B)$$

 $= 2 * 1 = 1$