Design and Analysis of Algorithms Homework 4

Clearly number your solution to each problem. Staple your solutions and bring them to class on the due date. Express your algorithms in pseudo-code when directed. Always provide justification for your answer when asked to give the running time of an algorithm. Be brief and concise, and draw pictures where appropriate.

Letter	Α	В	С	D	Е	F	G	Н	Ι	J	Κ	L	Μ
Key	0	1	2	3	4	5	6	7	8	9	10	11	12
Letter	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ
Key	13	14	15	16	17	18	19	20	21	22	23	24	25

- 1. (a) (5pts) Give the contents of the hash table that results when the following keys are inserted in that order into an initially empty 13-item hash table: $(E_1, A, S_1, Y, Q, U, E_2, S_2, T, I, O, N)$. Use $h(k) = k \mod 13$ for the hash function for the k-th letter of the alphabet (see above table for converting letter keys to integer values). Use linear probing.
 - (b) (5pts) Give the contents of the hash table that results when the same keys are inserted in that order into an initially empty 13-item hash table. Use $h(k) = k \mod 13$ for the hash function for the k-th letter of the alphabet (see above table for converting letter keys to integer values). Use double hashing and let $h'(k) = 1 + (k \mod 11)$ be the secondary hash function.
- 2. (a) (5pts) Draw the merge-sort tree for an execution of the merge-sort algorithm on the input sequence: (2, 5, 16, 4, 10, 23, 39, 18, 26, 15) (like in Figure. 4.2).
 - (b) (5pts) Draw the quick-sort tree for an execution of the quick-sort algorithm on the input sequence from part (a) (like in Figure 4.12). Use the last element as the pivot.
 - (c) (5pts) Draw the quick-sort tree for an execution of the quick-sort algorithm on the input sequence from part (a) (like in Figure 4.12). Use the element at rank $\lfloor \frac{n}{2} \rfloor$ as the pivot.
 - (d) (2pts) What is the running time of the version of quick-sort in part (c) on a sequence that is already sorted? Explain.
- 3. (a) (5pts) Suppose we are given a sequence S of n elements, each of which is colored red or blue. Assuming S is represented by an array, give a linear-time **in-place** algorithm for ordering S so that all the blue elements are listed before all the red elements. What is the running time of your method?
 - (b) (5pts) Let A and B be two sequences of n integers each. Give an integer m, describe an $O(n \log n)$ time algorithm for determining if there is an integer a in A and an integer b in B such that m = a + b.
- 4. (a) (5pts) Suppose we are given a sequence S of n elements, each of which is an integer in the range $[0, n^2 1]$. Describe a simple method for sorting S in O(n) time. [*Hint*: think of alternative ways of viewing the elements].
 - (b) (3pts) Does the running time of radix-sort depend on the order of keys in the input? Explain.
- 5. (5pts) A forensic lab receives a delivery of n samples. They look identical, but in fact, some of them have a different chemical composition. There is a device that can be applied to two samples and tells whether they are different or not. It is known in advance that most of the samples (more then 50%) are identical. Find one of those identical samples making no more than n comparisons. (Beware: it is possible that two samples are identical but do not belong to the majority of identical samples.)