
Fundamental Techniques
• Greedy Method

• philosophy (greedy choice, substructure property)
• problems

• Fractional knapsack (algorithm, runtime)
• Task scheduling (algorithm, runtime)

• Divide and Conquer
• philosophy (divide, recur, conquer)
• problems

• Merge sort (algorithm, runtime)
• Integer multiplication (algorithm, runtime)

• recurrence equations and master theorem
• Dynamic Programming

• philosophy (subproblem optimality, subproblem overlap, bottom-up, table)
• define subproblems
• show subproblem optimality
• express solution to large problem through solutions to smaller problems (recurrence formula)
• implementation

• problems
• matrix chain multiplication (solution, algorithm, complexity)
• 0-1 knapsack problem (solution, algorithm, complexity)

Graphs
• Definitions: graph, vertex, edge, directed, weighted, vertex degree, adjacent, incident, path, simple path,

cycle, simple cycle, subgraph, spanning subgraph, connected, connected components, spanning trees, forest,
biconnected graph (components), separation vertex and edge

• Properties
• Data structures

• edge list, adjacency list, adjacency matrix
• performance

• DFS
• algorithm and complexity
• properties

• connected component of v by DFS(G, v)
• spanning tree by discovery edges (other edges are back edges)

• applications
• path finding
• cycle finding
• connectedness
• connected components
• spanning tree (forest)
• biconnected components

• be able to find (using any method) separation vertices, separation edges, and
biconnected components

• BFS
• algorithm and complexity
• properties

• connected component of v by BFS(G, v)
• spanning tree by discovery edges (other edges are cross edges)
• layering the vertices of G with L0, L1, L2, …

• applications
• connected components (connectedness)
• spanning tree (forest)
• cycle finding
• path with minimum number of edges

• Comparison of DFS and BFS

Directed Graphs
• Definitions: in-degree, out-degree, directed path, reachability, directed cycle, DAGs, strong connectivity
• Representation: v has incoming edges and outgoing edges
• Directed DFS (complexity)

• strong connectivity algorithm (complexity)
• Transitive closure

• definition
• algorithm (Floyd-Warshall) and complexity

• DAGs and topological sorting
• any topological sorting algorithm and complexity

Weighted Graphs
• Shortest path problem formulation
• Shortest path tree and Dijkstra’s algorithm (algorithm, complexity, applicability [no neg. edges])
• Bellman-Ford algorithm (algorithm, complexity, applicability [neg. edges OK, no neg-cycles])
• Shortest path in DAGs and linear-time algorithm (algorithm that uses topological sorting, applicability [neg.

edges OK])
• No all pairs shortest path
• Minimum Spanning Trees

• Definitions
• Prim-Jarnik’s algorithm

• algorithm
• complexity
• properties behind the correctness - partition property and cycle property

• Kruskal’s algorithm
• algorithm
• complexity
• how it differs from Prim-Jarnik approach
• data structures and implementation (find, union)

• No Baruvka’s algorithm

Maximum Flow
• Definitions: edge capacity, flow network, source, sink, flow, cut, flow over cut, capacity of a cut
• Maximum flow problem formulation
• Flow augmentation and augmenting path
• Ford-Fullkerson’s and Edmonds-Karp algorithm

• be able to apply/use
• complexity

• Max-Flow and Min-Cut Theorem

